Skip to content

Improper Integral

Tags
Calculus
Cegep/2
Word count
903 words
Reading time
6 minutes

Extension of definite integral to esoteric cases where FTC2 doesn't apply

Forms

Infinite integral

If f is continuous on [a,), then

af(x)dx=limtatf(x)dx

Discontinuous integral

If f is discontinuous at a, then

abf(x)dx=limta+tbf(x)dx

If the discontinuity occurs inside the interval, split the integral.

Examples

Evaluate the following infinite integrals:

ln2ex(e2x+4)32dx

ln2ex(e2x+4)32dx=limtln2tex(e2x+4)32dx

Let u=ex, then du=exdx.

=limt2et1(u2+4)32du

Let u=2tanθ.

=limtπ4arctanet22sec2θ(2secθ)3dθ=limt14π4arctanet2cosθdθ=limt14sinθ|π4arctanet2=limt14[sin(arctanet2)sinπ4]=14[sinπ2sinπ4]=14(122)

Evaluate the following discontinuous integrals:

111x2dx

111x2dx=2011x2dx=2limt0+t11x2dx=2limt0+(1x)|t1=2limt0+(11+1t)=

141xxdx

141xxdx=limt1+t41xxdx

Let u=x, then du=12xdx.

=limt1+t22uu2udu=limt1+2t21u1dx=limt1+2ln|u1||t2=limt1+2(ln|21|ln|t1|)=

2313xdx

2313xdx=limt32t13xdx

Let u=3x, then du=dx.

=limt313t1udu=limt3[2u]13t=limt3(23t21)=2

01xlnxdx

01xlnxdx=limt0+t1xlnxdx

Let u=lnx and dv=xdx,
then du=1xdx and v=23x32.

=limt0+lnx23x3223x12du|t1=limt0+23lnxx3249x32|t1=limt0+(23ln113249132)(23lntt3249t32)=4923limt0+lntt32=4923limt0+lntt32=4923limt0+1t32t52=4923limt0+23t32=49

Determine if the improper integral converges or diverges. If it converges, find the value:

06x3(x4+1)2dx

Let u=x4+1, then du=4x3dx.

06x3(x4+1)2dx=limt04+1t4+132u2du=limt32[u1]04+1t4+1=limt32((t4+1)1+(04+1)1)=32

26ydy

Let u=6y, then du=dy.

26ydy=limt6+t4udu=limt[23u32]6+t4=limt(23432+23(6+t)32)=

x3dx

x3dx=0x3dx+0x3dx=limtt0x3dx+lims0sx3dx=limt14x4|t0+lims14x4|0s=limt(014t4)+lims(14s40)=D.N.E.

Contributors

Changelog